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Problem Statement
As	 a	 new	 interdisciplinary,	 complex	 network	 has	 aroused	 the	
common	 interest	 of	 experts	 in	 different	 fields	 such	 as	 physics,	
mathematics,	 and	 biology	 and	 computer	 science.	 The	 complex	
network	 theory	 has	 been	 applied	 to	 the	 research	 of	 epidemic,	
social	communication,	traffic	flow	and	brain	science.	The	research	
on	epidemic	and	social	communication	has	two	main	purposes:	to	
suppress	the	outbreak	of	epidemic	and	accelerate	the	extinction.	
Scholars	 have	 used	 the	 theory	 of	 complex	 networks	 to	 study	

Study the Outbreak and End Characteristics 
of Epidemic and Social Transmission from 

the Perspective of Data

Abstract
Objective: from	the	perspective	of	data,	this	paper	discusses	the	characteristics	
of	 the	outbreak	and	ends	of	 epidemic	diseases	 and	 social	 communication,	 and	
provides	a	new	idea	for	the	research	of	epidemic	diseases	and	social	communication,	
which	is	important	for	understanding	the	characteristics	of	epidemic	diseases	and	
formulating	more	effective	epidemic	prevention	measures.	

Method: This	 paper	 starts	 from	 the	 perspective	 of	 data,	 based	 on	 the	 theory	
of	 complex	networks,	 analyses	 the	 collected	data	 related	 to	 influenza,	measles	
and	 COVID-19,	 and	 draws	 on	 the	 epidemic	 transmission	 theory	 to	 study	 the	
characteristics	of	the	spread	and	end	of	the	epidemic	from	the	perspective	of	data,	
and	successively	explores	the	hysteresis	loop	phenomenon	The	estimation	method	
of	news	dissemination	potential	in	social	media	and	the	influence	of	susceptibility	
and	contact	matrix	on	the	spread	and	control	of	COVID-19.

Results/Conclusion: The	 results	 show	 that	 the	 outbreak	 process	 and	 the	 end	
process	 of	 epidemic	 transmission	 are	 asymmetric,	 and	 the	 area	 of	 hysteresis	
loop	is	paradoxically	dependent	on	parameters	in	the	state	space	and	parameter	
space.	A	theoretical	derivation	method	of	effective	reproduction	number	in	public	
opinion	communication	is	proposed.	Using	this	method	can	help	people	judge	the	
propagation	potential	of	events	and	provide	theoretical	guidance	for	formulating	
effective	control	strategies.	The	numerical	simulation	results	obtained	through	the	
SIR	model	prove	that	the	changes	in	susceptibility	and	contact	matrix	have	a	great	
impact	on	the	transmission	of	COVID-19,	which	is	the	main	reason	for	the	age	and	
gender	heterogeneity	in	cases.	Our	research	shows	that	there	are	age	and	gender	
differences	in	the	transmission	of	COVID-19,	which	is	important	to	develop	more	
effective	epidemic	prevention	measures.
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the	spread	of	epidemics	for	more	than	20	years,	and	have	made	
fruitful	research	results.	However,	there	are	still	many	important	
issues	 to	 be	 studied	 and	 solved	 in	 scientific	 research,	 such	 as	
revealing	 the	 true	 spread	 characteristics	 of	 epidemic	 diseases,	
accurately	 predicting	 the	 spread	 trend	 of	 epidemic	 diseases,	
and	proposing	more	effective	control	strategies.	When	studying	
epidemic	and	social	transmission,	scholars	often	use	the	method	
of	 extending	 the	 original	 model	 to	 explore	 new	 phenomena.	
Although	this	research	method	is	reasonable,	it	is	not	conducive	
to	revealing	features	beyond	the	traditional	model,	especially	for	
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some new diseases or situations that cannot be described by the 
traditional model [1, 2].

In this study, we adopt completely opposite research ideas. 
Before studying the model, we first collect and analyse data 
to find the topics to be studied. In the study of epidemic 
diseases, scholars mainly focus on the outbreak process of 
epidemic diseases, while ignoring the end stage of epidemic 
diseases. One of the consequences is that, in the face of the 
COVID-19 outbreak, because there is no responding theoretical 
support, governments cannot find effective control strategies. 
Considering that the research methods of social transmission and 
epidemic are similar, we studied the dynamic behavior of virus 
and information transmission on social networks in this paper. By 
analysing the data of influenza, measles and COVID-19, this paper 
discusses the characteristics of the outbreak and end of epidemic 
transmission, deduces the theoretical method of effective 
reproduction number in public opinion transmission, and further 
studies the impact of susceptibility on the transmission of COVID- 
19 [3, 4].

Research design
Research method
Based on the complex network theory, this paper takes the 
spread and end characteristics of epidemic diseases as the 
research object, and carry out the following three works:

By analysing the data of influenza and measles, we can reveal the 
asymmetry between the outbreak process and the end process 
of the epidemic spread, and theoretically analyse the physical 
mechanism behind it from the perspective of the hysteresis 
loop to explain the paradox that the area of the hysteresis loop 
depends on parameters in the state space and parameter space 
[5-8].

Based on the epidemic spread theory, this paper intends to 
derive the theoretical method of effective regeneration number 
in public opinion communication, and verify the method with 
micro blog data. Specifically, the responding time series of 
the number of new participants in the daily topic discussion is 
obtained by analysing the forwarding data of different events 
on the micro blog platform, and the effective regeneration 
number is used to judge the spread potential of the epidemic or 
the message. The core of the derivation is as follows: According 
to Bayesian theorem, the time series of the number of new 
participants in daily topic discussion follows Poisson distribution, 
which is related to the distribution of generation time and 
effective regeneration number. By using Daley Kendall model 
to simulate the propagation process of messages and record all 
the propagation information of each node, we find that the time 
distribution generated in the public opinion model meets the 
negative binomial distribution. When we know the distribution of 
the time series and the generation time of the newly added topic, 
we can use the Markov chain Monte Carlo method to calculate 
the effective regeneration number [9, 10].

According to the collected data related to COVID-19, the impact 
of susceptibility on the transmission of COVID-19 was studied. 
Specifically, by analysing the confirmed case data of COVID-19 

in Wuhan and Shanghai, calculate the probability of symptoms 
of individuals of different ages and genders, and combine the 
contact matrix of COVID-19 population before and after the

 COVID-19 outbreak, use the SIR model with age and gender 
structure to study the impact of changes in susceptibility and 
contact matrix on the transmission of COVID-19.

Burst and end characteristic hysteresis loop 
phenomenon
Epidemic transmission is one of the hottest topics in the field 
of complex network research, and has made remarkable 
achievements, including: infinitesimal threshold; Reaction 
diffusion model; Stream driven model; Time-varying network; 
Adaptive network, etc. One of the commonalities of these efforts 
is the infection rate during the spread of the epidemic. The 
change curve of infection density versus infection rate βI was a 
second-order phase transition [11, 12].

In research, we usually randomly select one or a small proportion 
of nodes as the infection seed, and then let the infection rate β 
increase from 0 to 1, and increase ∆ β every time， And on each 
β value, take system of the starts to evolve from the same initial 
state until the system reaches steady state. So we can get the 
infection density βI. The bifurcation diagram of the change, so as 
to roughly determine the value of β𝑐. By analysing the infection 
density when the infection rate value is near the threshold value 
βI. The change of I can determine the phase change type of the 
epidemic outbreak process [13].

Establishment of epidemic transmission model: Generally, 
nodes in the network can be divided into four types: susceptible, 
latent infected and recovered. The nodes in the network that 
can be infected but have not been infected are called vulnerable 
nodes; The node that has been infected but has not been 
diagnosed is called the latent node; The node with confirmed 
infection is called the infected node; The cured and immune 
node or the node that is removed from the network after death 
is called immune node. The susceptible node has a probability of 
being infected by the infected node and becoming a latent node. 
If the number of infected nodes around the susceptible node is 
𝑘𝑖𝑛𝑓 > 1, then the probability of being infected is 1-(1-𝛽) 𝑘𝑖𝑛𝑓; 
Latent node has the probability of 𝛾 to become an infected node; 
The infected node has the probability of 𝜇 to become a recovery 
node. Commonly used, 𝑆, 𝐸, 𝐼, 𝑅 and 𝑠, 𝑒, 𝑟 represent the number 
and density of susceptible nodes, latent nodes, infected nodes 
and immune nodes respectively [14, 15].

Basic regeneration number Ro, effective regeneration number 
Rt, infection rate threshold 𝛽𝑐. Average transmission time Ts 
and average generation time Tq are the most basic parameters 
in epidemiology. Introduce an infection in a network that is all 
susceptible nodes Node. The average number of susceptible 
nodes that can be infected by the infected node is called the 
basic regeneration number Ro. At the beginning of the epidemic, 
if Ro>1, the number of infected nodes increases. According to 
Ro=1, the threshold of infection rate can be calculated 𝛽𝑐. 
Common Ro ≥ 1 and 𝛽≥ 𝛽𝑐 to judge whether the epidemic can 
break out. The average number of susceptible nodes that can be 
infected by newly infected nodes at time t is called the effective 
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regeneration number Rt at time Classic epidemic transmission 
models include SIS model, SIR model and SEIR model. This study 
will use SIR or SEIR model to establish the transmission model of 
COVID-19 [16-18].

Basically, other models are derived from the changes of these 
three models. In SIS model, there are only susceptible nodes and 
infected nodes in the network, and the nodes are evenly mixed. 
Expressed by 𝑠 (𝑡) and i (𝑡) respectively:

𝑑𝑠(𝑡)

𝑑𝑡    = ―(𝑡)𝑠(𝑡) +𝜇𝑖(𝑡)                                                                            (1)

𝑑𝑖(𝑡)

𝑑𝑡   = 𝛽𝑖(𝑡)𝑠(𝑡) ―𝜇𝑖(𝑡)                                                                            (2)

When the system reaches steady state, di (t)/dt=ds (t)/dt=0.

In the SIR model, nodes are divided into susceptible nodes, 
infected nodes and immune nodes β Is infected, and the infected 
node μ The probability of is restored to the immune node, and 
the responding dynamic equations are as follows.

𝑑𝑠(𝑡)

𝑑𝑡    = ―(𝑡)𝑠(𝑡) 	              (3)

𝑑𝑖(𝑡)

𝑑𝑡   = (𝑡)(𝑡) ―𝜇𝑖(𝑡) 	                  (4)

𝑑𝑖(𝑡)

𝑑𝑡   = (𝑡)	                  (5)

Analysis of the Delay Phenomenon of Epidemic 
Transmission on Complex Networks
By analysing influenza data in Hong Kong and measles data 
in New York and Baltimore, we found that the transmission 
process of epidemics can be divided into outbreak process and 
end process, and the two processes are asymmetric, forming a 
hysteresis loop. By making the system change the infection rate 
adiabatic before evolving to the steady state, we successfully 
reproduce the hysteresis loop in SIS model and SIRS model, and 
make it clear that the hysteresis loop is caused by the memory of 
the system before evolving to the steady state. In addition, we 
also studied the dependence of the area of the hysteresis loop 
on the parameters, and found a "bell shaped" hysteresis loop. 
Further analysis of the data shows that the hysteresis loop in 
the data is found in the state space, while the previous work is a 
hysteresis loop reproduced in the parameter space [19]. 

With this in mind, in this work, we directly study the characteristics 
of the hysteresis loop in the state space during the end of the 
epidemic. Using the same model, we successfully reproduce the 
hysteresis loop in the data in the state space, and find that the area 
of the hysteresis loop is completely opposite to the conclusion in 
the parameter space in terms of parameter dependence, which 
leads to a paradox. In the parameter space, when the infection 
rate increment is fixed, the larger the evolution time 𝑇, the smaller 
the area of hysteresis loop; When the evolution time is fixed, 
the larger the infection rate increment is, the larger the area of 
hysteresis loop is. But in the state space, when the infection rate 

increment is fixed, the larger the evolution time is, the larger the 
area of the hysteresis loop is; when the evolution time is fixed, 
the larger the infection rate increment is, the smaller the area of 
hysteresis loop is. Through theoretical analysis, we find that the 
calculation method of the area of different hysteresis loops in the 
two spaces is the cause of the paradox, and the paradox can be 
eliminated by parameter substitution and controlling the length 
of evolution time. Finally, we use mean field theory to prove the 
results of numerical simulation [20-22].

We find that the time series of epidemics is composed of 
outbreak peaks and background noise, and the spread process 
of epidemics can be divided into outbreak process and end 
process. The two processes are asymmetric, forming a hysteresis 
loop. By analysing the cold data in Hong Kong and the measles 
data in New York and Baltimore, we proved that the hysteresis 
loop characteristic in the data is universal. Figure 1 (a) shows the 
measles data in New York. We found that the outbreak peaks 
in the data are asymmetric. Randomly select an explosive peak 
from Figure 1 (a), mark it with a blue circle and the enlarged 
result is shown in Figure 1 (b).

By observing Figure 1 (d), we can find that the area of other 
peaks is similar except for No. 8 explosive peak. Looking at Figure 
1 (e), we can find that the area of all outbreak peaks is greater 
than 0, which indicates that the hysteresis loop is a common 
phenomenon of epidemics. In addition, by comparing Figure 1 
(d, e) (Figure 1).

We use this model to study the mechanism of hysteresis loops 
in state space. During the outbreak β Increase from 0 to 𝛽𝑚𝑎𝑥, 
each increase ∆ β； At the end of the process β from 𝛽𝑚𝑎𝑥 
decreases to 0, each time it decreases ∆ β. After every time step 
of system evolution, the infection rate will change once β. The 
function expression of is as follows:

(𝑡) 𝑡 ≠ 𝑛𝑇, = 1,2,3,…,

Figure 1 (a) Measles data responding to New York; (b) responding 
to the burst peak selected by the blue circle in the figure a; 
(c) The result after reconstruction of responding abscissa 
b; (d) the Area enclosed by the burst peak in responding 
a in the form of b diagram; (e) the area enclosed by the 
explosion peak in responding a in the form of c diagram.
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(𝑡) ± ∆𝛽 𝑡 = 𝑛𝑇, = 1,2,3,…,                                                                                               (6)

Where, "+" responds to the burst process and "-" responds to 
the end process. In addition, the initial state of the system in 
the next infection rate value will inherit the last state of the 
evolution of the previous infection rate value system, rather than 
resetting the system, starting from the same initial state. We use 
SIS model to simulate the spread of epidemic. In the SIS model, 
nodes are divided into susceptible nodes and infected nodes. The 
susceptible nodes will β Is infected, and the infected node will μ 
Under the probability of. When the number of infected nodes 
around the susceptible node k_ When inf>1, the probability of 
the susceptible node being infected by the infected node is

1 ― (1 ― 𝛽)𝑓	                                                                                                                  (7)

Calculation of message propagation potential on 
social media
We use the Delay Kendall model to simulate the message 
propagation process, and use the ABM method to record all 
the information of each node in the entire propagation process. 
Analysing the results of numerical simulation, we found that 
the distribution of generation time ϕ (𝑡) satisfies the negative 
binomial distribution, and the average propagation time 𝑟 (𝑡) 
is highly related with the average generation time 𝑇 (𝑡). In this 
work, we propose a complete set of theoretical methods to 
identify the propagation potential of messages in social media. 
This theoretical method only requires the time series of the 
number of participants in the topic discussion every day, and 
other relevant parameters can be derived theoretically. The core 
of the theoretical method is as follows: according to Bayesian 
theorem, 𝐶 (𝑡) obeys Poisson distribution, which is related to the 
distribution of generation time ϕ (𝑡) is related to the effective 
regeneration number 𝑅. Known 𝐶 (𝑡) and ϕ (𝑡) then we can use  
the Markov Chain Monte Carlo method to calculate 𝑅. Finally, we 
apply this method to judge the propagation potential of different 
events on the micro blogging platform (Figure 2).

Figure 2 is a schematic diagram of the theoretical method. The 
first step is to input data, that is, the time series of the number 
of new participants in the discussion every day (𝑡). The second 

step is the core of the whole method. We need to know the 
distribution of the generation time of the message. Figure 
2(B) shows the shape of the distribution of generation time at 
two times selected from 2(A). Then, under the framework of 
Bayesian theory, MCMC method is used to estimate its effective 
regeneration number 𝑅 𝑡, that is, output data [23].

Influence of susceptibility and exposure mode 
changes on the transmission and control of 
COVID- 19
In this work, we use data from two sources. The first data was 
collected by the China Center for Disease Control and Prevention. 
This data statistics the daily summary data of COVID-19 diagnosed 
by laboratory in other regions of Hubei Province (except Wuhan 
for short) and provinces and cities outside Hubei Province (Hubei 
for short). As of February 25, 2020, the data recorded the gender 
and age information of each case. The second data source is 
quoted from reference, which records the age and gender 
information of confirmed cases of COVID-19 in Wuhan and 
outside Hubei Province. The data is up to March 16, 2020. Due to 
the problem of reporting rate, both data will lose some cases, so 
we compared the two data to verify the accuracy of the data, and 
the results are shown in Table 1. In Table 1, we use R to indicate 
susceptibility, that is, the risk of COVID-19 infection. The R in the 
follow-up results represents susceptibility (Table 1), (Figure 3).

From the references (J. T. Wu et al., 2020), we have obtained the 
contact matrix of the people in Wuhan and Shanghai before and 
after the outbreak of COVID-19. Figures 4 and 5 show the gender 
specific contact matrix.

Comparing Figure 4 (A, B) and (C, D), we can find that the average 
exposure times of men and women before the outbreak of 
COVID-19 can reach a maximum of 12, but the average exposure 
times after the outbreak are less than 1. By observing Figure 4 
(A), we can know that the average exposure times of male age 
group 15-19 and age group 10-14 are the largest. Looking at 
Figure 4 (B), we can find the largest average number of contacts 
in female age is group 65+ and age group 55-59.

Comparing Figure 5 (A, B) and (C, D), we can find that the average 

Figure 2 Schematic diagram of theoretical method. (A) Input data, 𝑪 (t) data collected in social Media; (B) The 
distribution of the generation time of the two times selected from A; (C) MCMC Method; (D) Output 
data, estimated effective regeneration number 𝑅.
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contact times of men before the outbreak of COVID-19 can reach 
14 times, the average contact times after the outbreak are less 
than 1 time, while the average contact times of women before 
the outbreak can reach 20 times, and the average contact times 
after the outbreak are about 2 times. By observing Figure 5 (A), 
we can know that the average exposure times of male age group 
15-19 and age group 15-19 are the largest. Looking at Figure 5 
(B), we can find that the average number of contacts of female 
age group 10-14 and age group 10-14 is the largest.

Figures 6 and 7 shows the average number of contacts between 
the people in Wuhan and Shanghai before and after the outbreak 
of COVID-19 among all age groups, that is, the average contact 
matrix (Figures 4-7).

In addition, we also analysed the proportion of male and female 
contacts in different age groups and the same age group in 
Wuhan and Shanghai. The results are shown in Figures 8 and 9. 
For Wuhan area, before the outbreak of COVID-19, the average 
contact times of men and women with the same age group first 
increased and then decreased with age, and the proportion of 
male and female age groups 10-14 and the same age group was 
the largest; After the outbreak of COVID-19, the average number 
of contacts with the same age group, both men and women, 
showed an overall increasing trend. The male age group 60-64 and 
the same age group had the largest proportion of contacts, while 
the female age group 65+ and the same age group had the largest 
proportion of contacts. For the Shanghai area, the proportion 
of male and female age groups 10 to 14 who contacted their 
peers was the largest before the outbreak of COVID-19; After 

the outbreak of COVID-19, the proportion of contact with peers 
showed an overall upward trend, with the largest proportion of 
men aged 60-64 and women aged 65+ (Figures 8 and 9).

Results of numerical simulation
Mechanism of the hysteresis loop
In the numerical simulation, we use a random network with the 
number of nodes N=10000 and the average degree k=6, and set 
μ= 0.2, 100-time steps of the system in both the burst process 
and the end process to study the mechanism of the hysteresis 
loop in the state space and the influence of parameters on the 
area of the hysteresis loop. The results are shown in Figure 10. 
In Figure 10 (a), we set T=1 to study ∆ β. For the influence of the 
area of hysteresis loop, it can be found that the hysteresis loop 
can also appear in the state space using the same model, which 
shows that the memory effect before the system evolves to the 
steady state is also the reason for the hysteresis loop in the state 
space. In addition, we can find that when the evolution time T 
is fixed, ∆ β = 0.001 responds to a large hysteresis loop area St. 
In Figure 10 (b), we set ∆ β= 0.01 to study the influence of T on 
the area of hysteresis loop, in which the area of hysteresis loop 
Responding to T=5 is larger (Figure 10).

Next, we study the dependence of the area 𝑆∆𝑡 of the hysteresis 
loop in the state space on the parameters. The results are shown 
in Figure 10 (c, d). By observing Figure 10 (c), we can find that 
when the evolution time T is fixed, the infection rate increases 
by ∆ β. The larger the hysteresis loop, the smaller the area 𝑆∆𝑡. 
This indicates that the system has a threshold of ∆ βc. When ∆ β 

Figure 3 Comparison between official data and personal records. A represents the age Distribution of 
cases from two different data sources. B represents the R of each age group, and the shaded area 
represents 95% CI.

Age Official data (n=12,886) Official data (n=12,886) Ratio of R (Official data 
vs Individual data)

  n (%) R (95% CI) n (%) R (95% CI)  
0-19 688 0.23 533 0.23 1 (0.9,1.11)

  -5 (0.22,0.25) -5 (0.21,0.25)  
20-39 4366 1.07 3376 1.06 1.01 (0.98,1.04)

  -34 (1.05,1.10) -33 (1.03,1.08)  
40-59 5330 1.37 4211 1.37 1 (0.97,1.03)

  -41 (1.34,1.39) -42 (1.34,1.41)  
≥60 2502 1.26 2000 1.29 0.98 (0.93,1.03)

  -19 (1.22,1.31) -20 (1.24,1.34)  

Table 1. The consistency between official data reported by China CDC and personal record data.
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< ∆ βc, the system will have hysteresis loop; When ∆ β ≥∆ βc ,the 
system will not have hysteresis loop when the. The sub graph 
in Figure 11 (c) shows the area of hysteresis loop 𝑆∆𝑡, and the 
infection rate increment, ∆ β satisfy the power law relationship. 

From Figure 10 (d), we can find that when the infection rate 
increases by ∆ β When fixed, the larger the evolution time T is, 
the larger the area St of the hysteresis loop is. This indicates that 
the system has a threshold value Tc. When T<T, the system does 

Figure 4 The contact matrix of male and female subjects in Wuhan before and after the  Outbreak of COVID-19. 
Sub graph A responds to the contact matrix of Wuhan men before the  Outbreak of COVID-19, sub 
graph C responds to the contact matrix of Wuhan men after the Outbreak of COVID- 19, sub graph B 
responds to the contact matrix of Wuhan women before the  Outbreak of COVID-19, and sub graph 
D responds to the contact matrix of Wuhan women after  The outbreak of COVID-19.

Figure 5 The contact matrix of male and female subjects in Shanghai before and after the outbreak of COVID-19. 
Sub graph A responds to the contact matrix of Shanghai men before the outbreak of COVID-19, sub graph 
C responds to the contact matrix of Shanghai men after the outbreak of COVID-19, sub graph B responds 
to the contact matrix of Shanghai women before the outbreak of COVID-19, and sub graph D responds to 
the contact matrix of Shanghai women after the outbreak of COVID-19.
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Figure 6 Average contact times of Wuhan people before and after the outbreak of COVID-19. The left figure 
corresponds to the average number of contacts between different age groups before the outbreak of 
COVID-19, and the right figure corresponds to the average number of contacts between different age 
groups after the outbreak of COVID-19.

Figure 7 Average contact times of Shanghai people before and after the outbreak of COVID-19. The left figure 
responds to the average number of contacts between different age groups before the outbreak of 
COVID-19, and the right figure responds to the average number of contacts between different age groups 
after the outbreak of COVID-19.

Figure 8 The proportion of contact between different age groups and the same age group in Wuhan before and after 
the outbreak of COVID-19. A is the proportion of men in contact with peers before the outbreak of COVID-19; 
B is the same as A, responding to female results; C and A are the same, responding to the proportion of male 
contact with peers after the outbreak; D and C are the same responding to female results.
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not have a hysteresis loop; when T>Tc, the system will have a 
hysteresis loop. The sub graph in Fig. 10 (d) shows that the area 
of hysteresis loop, 𝑆∆𝑡, and the evolution time, T, satisfy a power 
law relationship.

Figure 11 shows the relationship among the area 𝑆∆𝑡, evolution 
time T and infection rate increment ∆ β of hysteresis loop under 
three-dimensional figure, we get the same conclusion as Figure 
10 (c, d). When the evolution time T is fixed, 𝑆∆𝑡 increases with 
∆ β Increasing and decreasing monotonously; when the infection 

rate increases by ∆ β when fixed, 𝑆∆𝑡 increases monotonously 
with the increase of 𝑇 (Figures 11 and 12).

Figure 12 shows that when 𝑆∆𝑡 takes different values, ∆ β We can 
find that when the area of hysteresis loop is the same, ∆ β There 
is a linear relationship between 𝑇 and 𝑇. In order to keep 𝑆∆𝑡 
unchanged, the larger ∆ β Need to match a large evolution time.

Next, we compare the area of hysteresis loop with the infection 
rate increment ∆ β in the two spaces

Figure 9 The proportion of contact between different age groups and the same age group in Shanghai before and after 
the outbreak of COVID-19. A is the proportion of men in contact with peers before the outbreak of COVID-19; B 
is the same as A, coResponding to female results; C and A are the same, coResponding to the proportion of male 
contact with peers after the outbreak; D and C are the same, coResponding to female results.

Figure 10 (a) Infection density at responding evolution time T=1, 𝜌𝑙 Variation curve with ∆𝑡; (b) Corresponding infection 
rate increment ∆ β= Infection density at 0.01, 𝜌𝑙 Variation curve with ∆𝑡: (c) corresponding to 𝑆∆𝑡 with ∆ β Change 
curve of: (d) Responds to the change curve of 𝑆∆𝑡 with T. The sub graphs in (c, d) show the results in the double 
logarithmic coordinates.
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β and evolution time T. Figure 13 (a-d) shows the responding 
results in the parameter space. 𝑆ℎ represents the area enclosed 
by the hysteresis loop in the parameter space. In the parameter 
space, the infection rate increment ∆ β When fixed, the larger the 
evolution time T is, the smaller the area Sn of hysteresis loop is; 
When the evolution time T is fixed, the larger the infection rate 
increment ∆ β is, the larger the hysteresis loop area 𝑆ℎ is. This 
conclusion is completely contrary to the conclusion in the state 
space, and there is a paradox in the dependence of the area of 
the hysteresis loop in the two spaces on the parameters (Figure 13).

In order to find out the cause of the paradox, we return to the 
definition of the area of the hysteresis loop in two spaces. Use 𝜌𝑔 
and 𝜌𝑐 to express the infection density of the outbreak process 
and the end process respectively, then the expression of the area 
of the hysteresis loop in the state space is as follows:

∆ ∆ ∆   =∫( ( ) ― ( ))  = ∫( ( 
 

 + ) ― ( 
 

 + ))                                                                 (8)

Among Represents the integer part of t/T, 𝛿𝑡 represents the 
fractional part of t/T, then 𝛿 the size of t is between [0, T). When 
𝛿𝑡 changes between [0, T), the infection rate β Leave unchanged. 

In the approximate case, we can use 𝜌𝑔 and 𝜌𝑐 .The average value 
of 𝜌𝑔 and 𝜌𝑐 between [0, T] replaces 𝜌𝑔 (𝑡) and (𝑡), the following 
relationship is obtained:

 ≈∫( ( ) ― ( )) 
 

 = 
 

 	 	 	                (9)

According to equation (4), we can find that the simple 
despondence between 𝑆∆𝑡 and 𝑆ℎ is satisfied. 

Relationship, we can put (𝛽) convert to 𝜌(𝑡), convert 𝛽 to ∆𝑡.The 
result is shown in Figure 7.

We find that the curves in the parameter space are completely 
coincident with the curves in the state space after transformation, 
that is, the paradox mentioned above is caused by the different 
calculation methods of hysteresis loops in the two spaces, and 
the paradox can be eliminated by changing the parameters 
(Figure 14).

In Figure 14(a, b), although the total evolution time of the system 
is different, it is enough to complete the evolution of the whole 
hysteresis loop. Considering that the climate change in real life is 
impermanent, which can rain or clear suddenly, the responding 
system in the model does not have enough evolution time to 
complete the evolution of the whole hysteresis loop. We set 
the system to evolve 20 time steps in both the burst phase and 
the end phase, and the results are shown in Figure 8. When the 
total evolution time length is fixed, the larger the infection rate 
increment ∆ β is, the larger the area 𝑆∆𝑡 and 𝑆ℎ of the hysteresis 
loop is; the smaller the transient evolution time length 𝑇 is, 

Figure 11 The relationship among Hysteresis loop area 𝑆∆𝑡, 
evolution time 𝑇 and infection rate increment ∆ β.

Figure 12 When the area of hysteresis loop 𝑆∆𝑡 is fixed, ∆ β 
Relationship with T. The blue rectangle, red circle 
and black triangle respond to the results of 𝑆∆𝑡=14.0, 
14.5 and 15.0 respectively.

Figure 13 Figure 2 (a-d) responds to the result in the parameter 
space.

Figure 14 The rectangle and circle in (a, b) respond to the results 
in Figure 5 (a, b) after conversion, and the black solid 
lines and red solid lines in the figure respond to the 
results in Figure 2 (a, b).
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the larger the areas 𝑆∆𝑡 and 𝑆ℎ of the hysteresis loop are. The 
conclusions are consistent with those in the parameter space, 
which shows that we can eliminate the paradox mentioned 
above by controlling the total evolution time length.

Numerical simulation results verification
We use mean field theory to verify the results of numerical 
simulation. For SIS model, infection density ρ R satisfies the 
following equation:

𝑑𝜌𝐼 = (1 ― (1 ― (𝑡))𝜌 (1 ― 𝜌 ) ―𝜇𝜌	 	               (10)

Represents the average value of infected neighbors around the 
node. During the entire evolution process, k; Over time. For the 
convenience of writing, we rewrite the above formula as follows:

 
= (1 ― (1 ― ( )) ― )  ― (1 ― (1 ― ( ))) 2    (11)

Next, we solve the functional expressions of infection rate 
density in the burst process and the end process respectively. 
For explosive processes, when nT<t<(n+1) T, β (t)= n ∆ β，𝜌𝐼(𝑡) 
= 𝜌𝐼(𝑛𝑇)

Substituting these two conditions into the above equation, we 
can get:

 
= (1 ― (1 ― ∆( ))  ― )  ― (1 ― (1 ― ∆ )))2            (12)

Divide both sides by 𝜌2, the following formula is obtained:

Then let t=nT and substitute the above equation to get:

According to equation 7 and 11, we can get the calculation 
formula of the area of the hysteresis loop in two cases:

Figure 16 shows the responding theoretical results. We can find 
that the simulation is very good according to the results of mean 
field theory and numerical results (Figures 15-17). 

Next, we study the influence of network structure on hysteresis 
loop. We construct a scale-free network with the same node 
size and evenness as the random network. Figure 17 shows the 
area of the hysteresis loop in the scale-free network with respect 
to the infection rate increment ∆ β and evolutionary time. 
Comparing Figure 10 and Figure 16, we find that 𝑆∆𝑡 the same 

dependency relationship with 𝑇, which proves that 𝑆∆𝑡 has the 
same dependency relationship with 𝑇 and ∆ β. Figure 18 shows 
the three-dimensional diagram of reliable relationship between 
the area of the hysteresis loop in the scale-free network 𝑆∆𝑡 and 
the infection rate increment ∆ β, the dependence on evolution 
time T (Figure 18).

Conclusion and Enlightenment
In the first work, we focused on the end process of the epidemic, 
and found that the epidemic transmission process can be divided 
into the outbreak process and the end process. These two 
processes are asymmetric, forming a hysteresis loop. Through 
the research, we found that the memory effect before the system 
evolving to the steady state is the cause of the system hysteresis 
loop, and studied the dependence of the area of the hysteresis 
loop on the parameters in the parameter space. Considering that 
the hysteresis loop in the data is found in the state space, in this 

Figure 15 Results after a fixed evolutionary time step. Both the 
burst process and the end process evolve 20 time 
steps. Where (a, b) responds to the result of 𝑆∆;(c, d) 
responds to the result of 𝑆𝑡.

Figure 16 (a, b) Responds to dependencies among 𝑆∆ , ∆ β and 
T; (c, d) dependencies among St, ∆ β and T. In the sub 
graph, the rectangle symbol responds to the result of 
numerical simulation, and the straight line responds 
to the result of mean field theory.

Figure 17 Results for scale-free networks. (a) Middle 𝑻=𝟏; (b) 
Middle ∆ β = 𝟎.𝟎𝟏；(c) Responds to the relationship 
between 𝑆∆𝑡 and ∆ β; (d) Responds to the relationship 
between 𝑆∆𝑡 and 𝑻. The sub graphs in (c, d) respond 
to the results in the double logarithmic coordinate 
system.
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work, we directly studied the hysteresis loop in the state space, 
and found that the area of the hysteresis loop in the state space 
is related to the infection rate increment ∆ β. Contrary to the 
time dependence of evolution and the conclusion in parameter 
space, this leads to a paradox. Through analysis, we find out 
the causes of the paradox and the methods to eliminate it. In 
addition, we also studied the influence of network structure, and 
found that the same conclusions can be obtained in scale-free 
networks as in random networks, which shows that the area of 
the hysteresis loop is robust to parameter dependence. We study 
hysteresis loops directly in state space. Using the same model as 
in the parameter space, we also reproduce the hysteresis loop in 
the data in the state space. In the state space, when the infection 
rate increases ∆ β, the longer the evolutionary time is, the 
larger the area of the hysteresis loop is; When the evolutionary 
time 𝑇 is fixed, the infection rate increases ∆ β, the larger the 
hysteresis loop is, the smaller the area is. In the parameter space, 
when the infection rate increases ∆ β until fixed, the larger the 
evolution time is, the smaller the hysteresis loop area is; when 
the evolutionary time 𝑇 is fixed, the infection rate increases ∆ 
β, the larger the hysteresis loop, the larger the area is. The area 
of the hysteresis loop in the two spaces depends on completely 
opposite parameters, which leads to a paradox. Through analysis, 
we found the cause of contradiction in the calculation formula of 
different hysteresis loop areas in the two spaces, and can change 
𝑡=𝑇 through parameter transformation β⁄ ∆ β， And the method 
of controlling the total evolutionary time length to eliminate the 
paradox. In addition, we also found that when the area of the 
hysteresis loop is unchanged, the infection rate increases ∆ β 
And evolution time satisfy linear relationship. By using different 
network structures, we find that the area of the hysteresis loop 
is related to the infection rate increment ∆ β and evolutionary 
time. Next, we will focus on the contribution of this work. In 
general, by analysing the data of influenza and measles, we 
further revealed the asymmetry between the outbreak process 
and the end process of epidemic transmission, theoretically 
analysed the physical mechanism behind it from the perspective 
of the hysteresis loop, and explained the paradox that the area 
of the hysteresis loop depends on the parameters in the state 

space and parameter space. It is hoped that the two work we 
have done can arouse scholars' attention to the process of the 
end of the epidemic and carry out relevant research. In this way, 
in the face of the outbreak of the epidemic, our work can provide 
theoretical guidance for the country to formulate effective 
strategies, so as to quickly eliminate the epidemic and reduce 
the damage caused by the epidemic.

In the second work, we studied the propagation of information, 
and found that the average propagation time of messages 
is highly related with the average generation time, and the 
distribution of the average generation time satisfies the negative 
binomial distribution. Under the framework of Bayesian theory, 
we propose a whole set of theoretical methods to estimate the 
effective basic number of regeneration of messages. The biggest 
advantage of this method is that it does not rely on the initial 
conditions and only needs some C (t) data. Any other parameters 
can be estimated by theoretical methods, and the accuracy of the 
estimation results is high. After obtaining the change curve of the 
effective regeneration number Rt of the event, we can judge the 
propagation potential of the event at different times according to Rt. 
In addition, we can predict its future propagation through machine 
learning, compare C (t) of different events to judge the propagation 
potential of other events, which can help people develop more 
effective control strategies. In general, our work provides a 
theoretical method for deriving the effective regeneration 
number in the public opinion model. Using this method can help 
people judge the propagation potential of events and provide 
theoretical guidance for formulating effective control strategies.

In the third work, by analyzing the age and gender characteristics 
of early COVID-19 cases in

Wuhan and Shanghai, and estimating the relative risk related to 
susceptibility, we found that the

Intervention measures implemented in these two regions had a 
control effect on the spread o

COVID-19. In Wuhan and Shanghai, the number of confirmed 
cases of COVID-19 increases with

Age. The median age of the confirmed cases in Wuhan, Shanghai 
and other places outside Hubei

Province, whether male or female, did not change significantly 
over time. The impact of

Population mobility (input cases) is mainly reflected in the age 
groups and 65+. It has nothing to do with gender. Specifically, 
among men, the changes in age groups and 65+ are the largest, 
while among women, the changes in age groups. And 65+ are the 
largest. When fitting the total number of COVID-19 infections in 
various age groups in Wuhan and Shanghai, we found that the age 
and gender differences in the data could not be fitted using the 
same R, but the age and gender differences in the data could be 
fitted using the age and gender related susceptibility R. In general, 
based on the collected data related to COVID-19, we studied the 
impact of susceptibility on the transmission of COVID-19 in the 
third work. Our research has improved the understanding of the 
spread of COVID-19, which is of great significance for developing 
more effective intervention measures.

Figure 17 In a scale-free network, the three-dimensional 
diagram of the dependency relationship between 𝑆∆𝑡 
for 𝑻 and ∆ β.
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