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Problem Statement
As	 a	 new	 interdisciplinary,	 complex	 network	 has	 aroused	 the	
common	 interest	 of	 experts	 in	 different	 fields	 such	 as	 physics,	
mathematics,	 and	 biology	 and	 computer	 science.	 The	 complex	
network	 theory	 has	 been	 applied	 to	 the	 research	 of	 epidemic,	
social	communication,	traffic	flow	and	brain	science.	The	research	
on	epidemic	and	social	communication	has	two	main	purposes:	to	
suppress	the	outbreak	of	epidemic	and	accelerate	the	extinction.	
Scholars	 have	 used	 the	 theory	 of	 complex	 networks	 to	 study	

Study the Outbreak and End Characteristics 
of Epidemic and Social Transmission from 

the Perspective of Data

Abstract
Objective: from	the	perspective	of	data,	this	paper	discusses	the	characteristics	
of	 the	outbreak	and	ends	of	 epidemic	diseases	 and	 social	 communication,	 and	
provides	a	new	idea	for	the	research	of	epidemic	diseases	and	social	communication,	
which	is	important	for	understanding	the	characteristics	of	epidemic	diseases	and	
formulating	more	effective	epidemic	prevention	measures.	

Method: This	 paper	 starts	 from	 the	 perspective	 of	 data,	 based	 on	 the	 theory	
of	 complex	networks,	 analyses	 the	 collected	data	 related	 to	 influenza,	measles	
and	 COVID-19,	 and	 draws	 on	 the	 epidemic	 transmission	 theory	 to	 study	 the	
characteristics	of	the	spread	and	end	of	the	epidemic	from	the	perspective	of	data,	
and	successively	explores	the	hysteresis	loop	phenomenon	The	estimation	method	
of	news	dissemination	potential	in	social	media	and	the	influence	of	susceptibility	
and	contact	matrix	on	the	spread	and	control	of	COVID-19.

Results/Conclusion: The	 results	 show	 that	 the	 outbreak	 process	 and	 the	 end	
process	 of	 epidemic	 transmission	 are	 asymmetric,	 and	 the	 area	 of	 hysteresis	
loop	is	paradoxically	dependent	on	parameters	in	the	state	space	and	parameter	
space.	A	theoretical	derivation	method	of	effective	reproduction	number	in	public	
opinion	communication	is	proposed.	Using	this	method	can	help	people	judge	the	
propagation	potential	of	events	and	provide	theoretical	guidance	for	formulating	
effective	control	strategies.	The	numerical	simulation	results	obtained	through	the	
SIR	model	prove	that	the	changes	in	susceptibility	and	contact	matrix	have	a	great	
impact	on	the	transmission	of	COVID-19,	which	is	the	main	reason	for	the	age	and	
gender	heterogeneity	in	cases.	Our	research	shows	that	there	are	age	and	gender	
differences	in	the	transmission	of	COVID-19,	which	is	important	to	develop	more	
effective	epidemic	prevention	measures.
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the	spread	of	epidemics	for	more	than	20	years,	and	have	made	
fruitful	research	results.	However,	there	are	still	many	important	
issues	 to	 be	 studied	 and	 solved	 in	 scientific	 research,	 such	 as	
revealing	 the	 true	 spread	 characteristics	 of	 epidemic	 diseases,	
accurately	 predicting	 the	 spread	 trend	 of	 epidemic	 diseases,	
and	proposing	more	effective	control	strategies.	When	studying	
epidemic	and	social	transmission,	scholars	often	use	the	method	
of	 extending	 the	 original	 model	 to	 explore	 new	 phenomena.	
Although	this	research	method	is	reasonable,	it	is	not	conducive	
to	revealing	features	beyond	the	traditional	model,	especially	for	
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some	new	diseases	or	situations	that	cannot	be	described	by	the	
traditional	model	[1,	2].

In	 this	 study,	 we	 adopt	 completely	 opposite	 research	 ideas.	
Before	 studying	 the	 model,	 we	 first	 collect	 and	 analyse	 data	
to	 find	 the	 topics	 to	 be	 studied.	 In	 the	 study	 of	 epidemic	
diseases,	 scholars	 mainly	 focus	 on	 the	 outbreak	 process	 of	
epidemic	 diseases,	 while	 ignoring	 the	 end	 stage	 of	 epidemic	
diseases.	 One	 of	 the	 consequences	 is	 that,	 in	 the	 face	 of	 the	
COVID-19	outbreak,	because	there	is	no	responding	theoretical	
support,	 governments	 cannot	 find	 effective	 control	 strategies.	
Considering	that	the	research	methods	of	social	transmission	and	
epidemic	are	similar,	we	studied	the	dynamic	behavior	of	virus	
and	information	transmission	on	social	networks	in	this	paper.	By	
analysing	the	data	of	influenza,	measles	and	COVID-19,	this	paper	
discusses	the	characteristics	of	the	outbreak	and	end	of	epidemic	
transmission,	 deduces	 the	 theoretical	 method	 of	 effective	
reproduction	number	in	public	opinion	transmission,	and	further	
studies	the	impact	of	susceptibility	on	the	transmission	of	COVID-	
19	[3,	4].

Research design
Research method
Based	 on	 the	 complex	 network	 theory,	 this	 paper	 takes	 the	
spread	 and	 end	 characteristics	 of	 epidemic	 diseases	 as	 the	
research	object,	and	carry	out	the	following	three	works:

By	analysing	the	data	of	influenza	and	measles,	we	can	reveal	the	
asymmetry	between	the	outbreak	process	and	the	end	process	
of	 the	 epidemic	 spread,	 and	 theoretically	 analyse	 the	 physical	
mechanism	 behind	 it	 from	 the	 perspective	 of	 the	 hysteresis	
loop	to	explain	the	paradox	that	the	area	of	the	hysteresis	loop	
depends	on	parameters	in	the	state	space	and	parameter	space	
[5-8].

Based	 on	 the	 epidemic	 spread	 theory,	 this	 paper	 intends	 to	
derive	the	theoretical	method	of	effective	regeneration	number	
in	 public	 opinion	 communication,	 and	 verify	 the	method	 with	
micro	 blog	 data.	 Specifically,	 the	 responding	 time	 series	 of	
the	number	of	new	participants	 in	 the	daily	 topic	discussion	 is	
obtained	 by	 analysing	 the	 forwarding	 data	 of	 different	 events	
on	 the	 micro	 blog	 platform,	 and	 the	 effective	 regeneration	
number	is	used	to	judge	the	spread	potential	of	the	epidemic	or	
the	message.	The	core	of	the	derivation	is	as	follows:	According	
to	 Bayesian	 theorem,	 the	 time	 series	 of	 the	 number	 of	 new	
participants	in	daily	topic	discussion	follows	Poisson	distribution,	
which	 is	 related	 to	 the	 distribution	 of	 generation	 time	 and	
effective	 regeneration	 number.	 By	 using	 Daley	 Kendall	 model	
to	simulate	the	propagation	process	of	messages	and	record	all	
the	propagation	information	of	each	node,	we	find	that	the	time	
distribution	 generated	 in	 the	 public	 opinion	 model	 meets	 the	
negative	binomial	distribution.	When	we	know	the	distribution	of	
the	time	series	and	the	generation	time	of	the	newly	added	topic,	
we	can	use	the	Markov	chain	Monte	Carlo	method	to	calculate	
the	effective	regeneration	number	[9,	10].

According	to	the	collected	data	related	to	COVID-19,	the	impact	
of	 susceptibility	 on	 the	 transmission	of	 COVID-19	was	 studied.	
Specifically,	 by	 analysing	 the	 confirmed	 case	data	of	 COVID-19	

in	Wuhan	and	Shanghai,	calculate	 the	probability	of	symptoms	
of	 individuals	 of	 different	 ages	 and	 genders,	 and	 combine	 the	
contact	matrix	of	COVID-19	population	before	and	after	the

	 COVID-19	 outbreak,	 use	 the	 SIR	 model	 with	 age	 and	 gender	
structure	 to	 study	 the	 impact	 of	 changes	 in	 susceptibility	 and	
contact	matrix	on	the	transmission	of	COVID-19.

Burst and end characteristic hysteresis loop 
phenomenon
Epidemic	 transmission	 is	 one	 of	 the	 hottest	 topics	 in	 the	 field	
of	 complex	 network	 research,	 and	 has	 made	 remarkable	
achievements,	 including:	 infinitesimal	 threshold;	 Reaction	
diffusion	 model;	 Stream	 driven	 model;	 Time-varying	 network;	
Adaptive	network,	etc.	One	of	the	commonalities	of	these	efforts	
is	 the	 infection	 rate	 during	 the	 spread	 of	 the	 epidemic.	 The	
change	curve	of	infection	density	versus	infection	rate	βI	was	a	
second-order	phase	transition	[11,	12].

In	research,	we	usually	randomly	select	one	or	a	small	proportion	
of	nodes	as	the	infection	seed,	and	then	let	the	infection	rate	β	
increase	from	0	to	1,	and	increase	∆	β	every	time，	And	on	each	
β	value,	take	system	of	the	starts	to	evolve	from	the	same	initial	
state	until	 the	system	reaches	 steady	state.	So	we	can	get	 the	
infection	density	βI.	The	bifurcation	diagram	of	the	change,	so	as	
to	roughly	determine	the	value	of	β𝑐.	By	analysing	the	infection	
density	when	the	infection	rate	value	is	near	the	threshold	value	
βI.	The	change	of	I	can	determine	the	phase	change	type	of	the	
epidemic	outbreak	process	[13].

Establishment of epidemic transmission model:	 Generally,	
nodes	in	the	network	can	be	divided	into	four	types:	susceptible,	
latent	 infected	 and	 recovered.	 The	 nodes	 in	 the	 network	 that	
can	be	infected	but	have	not	been	infected	are	called	vulnerable	
nodes;	 The	 node	 that	 has	 been	 infected	 but	 has	 not	 been	
diagnosed	 is	 called	 the	 latent	 node;	 The	 node	with	 confirmed	
infection	 is	 called	 the	 infected	 node;	 The	 cured	 and	 immune	
node	or	the	node	that	is	removed	from	the	network	after	death	
is	called	immune	node.	The	susceptible	node	has	a	probability	of	
being	infected	by	the	infected	node	and	becoming	a	latent	node.	
If	the	number	of	infected	nodes	around	the	susceptible	node	is	
𝑘𝑖𝑛𝑓	>	1,	then	the	probability	of	being	infected	is	1-(1-𝛽)	𝑘𝑖𝑛𝑓;	
Latent	node	has	the	probability	of	𝛾	to	become	an	infected	node;	
The	infected	node	has	the	probability	of	𝜇	to	become	a	recovery	
node.	Commonly	used,	𝑆,	𝐸,	𝐼,	𝑅	and	𝑠,	𝑒,	𝑟	represent	the	number	
and	density	of	 susceptible	nodes,	 latent	nodes,	 infected	nodes	
and	immune	nodes	respectively	[14,	15].

Basic	 regeneration	 number	 Ro,	 effective	 regeneration	 number	
Rt,	 infection	 rate	 threshold	 𝛽𝑐.	 Average	 transmission	 time	 Ts	
and	average	generation	time	Tq	are	the	most	basic	parameters	
in	epidemiology.	 Introduce	an	 infection	 in	a	network	 that	 is	all	
susceptible	 nodes	 Node.	 The	 average	 number	 of	 susceptible	
nodes	 that	 can	 be	 infected	 by	 the	 infected	 node	 is	 called	 the	
basic	regeneration	number	Ro.	At	the	beginning	of	the	epidemic,	
if	 Ro>1,	 the	number	of	 infected	nodes	 increases.	According	 to	
Ro=1,	 the	 threshold	 of	 infection	 rate	 can	 be	 calculated	 𝛽𝑐.	
Common	Ro	≥	1	and	𝛽≥	𝛽𝑐	to	judge	whether	the	epidemic	can	
break	out.	The	average	number	of	susceptible	nodes	that	can	be	
infected	by	newly	infected	nodes	at	time	t	is	called	the	effective	
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regeneration	 number	 Rt	 at	 time	 Classic	 epidemic	 transmission	
models	include	SIS	model,	SIR	model	and	SEIR	model.	This	study	
will	use	SIR	or	SEIR	model	to	establish	the	transmission	model	of	
COVID-19	[16-18].

Basically,	 other	models	 are	derived	 from	 the	 changes	of	 these	
three	models.	In	SIS	model,	there	are	only	susceptible	nodes	and	
infected	nodes	in	the	network,	and	the	nodes	are	evenly	mixed.	
Expressed	by	𝑠	(𝑡)	and	i	(𝑡)	respectively:

𝑑𝑠(𝑡)

𝑑𝑡				=	―(𝑡)𝑠(𝑡)	+𝜇𝑖(𝑡)																																																																												(1)

𝑑𝑖(𝑡)

𝑑𝑡			=	𝛽𝑖(𝑡)𝑠(𝑡)	―𝜇𝑖(𝑡)																																																																												(2)

When	the	system	reaches	steady	state,	di	(t)/dt=ds	(t)/dt=0.

In	 the	 SIR	 model,	 nodes	 are	 divided	 into	 susceptible	 nodes,	
infected	nodes	and	immune	nodes	β	Is	infected,	and	the	infected	
node	μ	The	probability	of	is	restored	to	the	immune	node,	and	
the	responding	dynamic	equations	are	as	follows.

𝑑𝑠(𝑡)

𝑑𝑡				=	―(𝑡)𝑠(𝑡)		 													(3)

𝑑𝑖(𝑡)

𝑑𝑡			=	(𝑡)(𝑡)	―𝜇𝑖(𝑡)		 																	(4)

𝑑𝑖(𝑡)

𝑑𝑡			=	(𝑡)	 																	(5)

Analysis of the Delay Phenomenon of Epidemic 
Transmission on Complex Networks
By	 analysing	 influenza	 data	 in	 Hong	 Kong	 and	 measles	 data	
in	 New	 York	 and	 Baltimore,	 we	 found	 that	 the	 transmission	
process	of	epidemics	can	be	divided	into	outbreak	process	and	
end	process,	and	the	two	processes	are	asymmetric,	 forming	a	
hysteresis	loop.	By	making	the	system	change	the	infection	rate	
adiabatic	 before	 evolving	 to	 the	 steady	 state,	 we	 successfully	
reproduce	the	hysteresis	loop	in	SIS	model	and	SIRS	model,	and	
make	it	clear	that	the	hysteresis	loop	is	caused	by	the	memory	of	
the	system	before	evolving	to	the	steady	state.	 In	addition,	we	
also	studied	the	dependence	of	the	area	of	the	hysteresis	 loop	
on	 the	parameters,	 and	 found	a	 "bell	 shaped"	hysteresis	 loop.	
Further	 analysis	 of	 the	 data	 shows	 that	 the	 hysteresis	 loop	 in	
the	data	is	found	in	the	state	space,	while	the	previous	work	is	a	
hysteresis	loop	reproduced	in	the	parameter	space	[19].	

With	this	in	mind,	in	this	work,	we	directly	study	the	characteristics	
of	 the	hysteresis	 loop	 in	 the	state	space	during	 the	end	of	 the	
epidemic.	Using	the	same	model,	we	successfully	reproduce	the	
hysteresis	loop	in	the	data	in	the	state	space,	and	find	that	the	area	
of	the	hysteresis	loop	is	completely	opposite	to	the	conclusion	in	
the	parameter	space	in	terms	of	parameter	dependence,	which	
leads	to	a	paradox.	In	the	parameter	space,	when	the	infection	
rate	increment	is	fixed,	the	larger	the	evolution	time	𝑇,	the	smaller	
the	 area	 of	 hysteresis	 loop;	When	 the	 evolution	 time	 is	 fixed,	
the	larger	the	infection	rate	increment	is,	the	larger	the	area	of	
hysteresis	loop	is.	But	in	the	state	space,	when	the	infection	rate	

increment	is	fixed,	the	larger	the	evolution	time	is,	the	larger	the	
area	of	the	hysteresis	loop	is;	when	the	evolution	time	is	fixed,	
the	larger	the	infection	rate	increment	is,	the	smaller	the	area	of	
hysteresis	loop	is.	Through	theoretical	analysis,	we	find	that	the	
calculation	method	of	the	area	of	different	hysteresis	loops	in	the	
two	spaces	is	the	cause	of	the	paradox,	and	the	paradox	can	be	
eliminated	by	parameter	substitution	and	controlling	the	length	
of	evolution	time.	Finally,	we	use	mean	field	theory	to	prove	the	
results	of	numerical	simulation	[20-22].

We	 find	 that	 the	 time	 series	 of	 epidemics	 is	 composed	 of	
outbreak	peaks	and	background	noise,	and	 the	spread	process	
of	 epidemics	 can	 be	 divided	 into	 outbreak	 process	 and	 end	
process.	The	two	processes	are	asymmetric,	forming	a	hysteresis	
loop.	By	analysing	the	cold	data	in	Hong	Kong	and	the	measles	
data	in	New	York	and	Baltimore,	we	proved	that	the	hysteresis	
loop	characteristic	in	the	data	is	universal.	Figure	1	(a)	shows	the	
measles	 data	 in	New	York.	We	 found	 that	 the	outbreak	peaks	
in	the	data	are	asymmetric.	Randomly	select	an	explosive	peak	
from	 Figure	 1	 (a),	mark	 it	 with	 a	 blue	 circle	 and	 the	 enlarged	
result	is	shown	in	Figure	1	(b).

By	 observing	 Figure	 1	 (d),	 we	 can	 find	 that	 the	 area	 of	 other	
peaks	is	similar	except	for	No.	8	explosive	peak.	Looking	at	Figure	
1	(e),	we	can	find	that	the	area	of	all	outbreak	peaks	is	greater	
than	 0,	 which	 indicates	 that	 the	 hysteresis	 loop	 is	 a	 common	
phenomenon	of	 epidemics.	 In	 addition,	 by	 comparing	 Figure	1	
(d,	e)	(Figure 1).

We	use	this	model	to	study	the	mechanism	of	hysteresis	 loops	
in	state	space.	During	the	outbreak	β	Increase	from	0	to	𝛽𝑚𝑎𝑥,	
each	 increase	 ∆	 β；	 At	 the	 end	 of	 the	 process	 β	 from	𝛽𝑚𝑎𝑥 
decreases	to	0,	each	time	it	decreases	∆	β.	After	every	time	step	
of	system	evolution,	 the	 infection	rate	will	change	once	β.	The	
function	expression	of	is	as	follows:

(𝑡)	𝑡	≠	𝑛𝑇,	=	1,2,3,…,

Figure 1 (a)	Measles	data	responding	to	New	York;	(b)	responding	
to	the	burst	peak	selected	by	the	blue	circle	in	the	figure	a;	
(c)	The	result	after	reconstruction	of	responding	abscissa	
b;	(d)	the	Area	enclosed	by	the	burst	peak	in	responding	
a	in	the	form	of	b	diagram;	(e)	the	area	enclosed	by	the	
explosion	peak	in	responding	a	in	the	form	of	c	diagram.
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(𝑡)	±	∆𝛽 𝑡	=	𝑛𝑇,	=	1,2,3,…,																																																																																															(6)

Where,	 "+"	 responds	 to	 the	burst	process	 and	 "-"	 responds	 to	
the	 end	 process.	 In	 addition,	 the	 initial	 state	 of	 the	 system	 in	
the	 next	 infection	 rate	 value	 will	 inherit	 the	 last	 state	 of	 the	
evolution	of	the	previous	infection	rate	value	system,	rather	than	
resetting	the	system,	starting	from	the	same	initial	state.	We	use	
SIS	model	to	simulate	the	spread	of	epidemic.	In	the	SIS	model,	
nodes	are	divided	into	susceptible	nodes	and	infected	nodes.	The	
susceptible	nodes	will	β	Is	infected,	and	the	infected	node	will	μ	
Under	 the	probability	 of.	When	 the	number	of	 infected	nodes	
around	 the	susceptible	node	k_	When	 inf>1,	 the	probability	of	
the	susceptible	node	being	infected	by	the	infected	node	is

1	―	(1	―	𝛽)𝑓	 																																																																																																																	(7)

Calculation of message propagation potential on 
social media
We	 use	 the	 Delay	 Kendall	 model	 to	 simulate	 the	 message	
propagation	 process,	 and	 use	 the	 ABM	 method	 to	 record	 all	
the	information	of	each	node	in	the	entire	propagation	process.	
Analysing	 the	 results	 of	 numerical	 simulation,	 we	 found	 that	
the	 distribution	 of	 generation	 time	ϕ	 (𝑡)	 satisfies	 the	 negative	
binomial	 distribution,	 and	 the	 average	 propagation	 time	 𝑟	 (𝑡)	
is	highly	related	with	the	average	generation	time	𝑇	 (𝑡).	 In	this	
work,	 we	 propose	 a	 complete	 set	 of	 theoretical	 methods	 to	
identify	the	propagation	potential	of	messages	 in	social	media.	
This	 theoretical	 method	 only	 requires	 the	 time	 series	 of	 the	
number	 of	 participants	 in	 the	 topic	 discussion	 every	 day,	 and	
other	relevant	parameters	can	be	derived	theoretically.	The	core	
of	 the	 theoretical	method	 is	 as	 follows:	 according	 to	 Bayesian	
theorem,	𝐶	(𝑡)	obeys	Poisson	distribution,	which	is	related	to	the	
distribution	of	 generation	time	ϕ	 (𝑡)	 is	 related	 to	 the	effective	
regeneration	number	𝑅.	Known	𝐶	(𝑡)	and	ϕ	(𝑡)	then	we	can	use		
the	Markov	Chain	Monte	Carlo	method	to	calculate	𝑅.	Finally,	we	
apply	this	method	to	judge	the	propagation	potential	of	different	
events	on	the	micro	blogging	platform	(Figure 2).

Figure	2	is	a	schematic	diagram	of	the	theoretical	method.	The	
first	step	is	to	input	data,	that	is,	the	time	series	of	the	number	
of	new	participants	 in	the	discussion	every	day	(𝑡).	The	second	

step	 is	 the	 core	 of	 the	 whole	method.	We	 need	 to	 know	 the	
distribution	 of	 the	 generation	 time	 of	 the	 message.	 Figure	
2(B)	 shows	 the	 shape	of	 the	distribution	of	generation	time	at	
two	 times	 selected	 from	 2(A).	 Then,	 under	 the	 framework	 of	
Bayesian	theory,	MCMC	method	is	used	to	estimate	its	effective	
regeneration	number	𝑅 𝑡,	that	is,	output	data	[23].

Influence of susceptibility and exposure mode 
changes on the transmission and control of 
COVID- 19
In	this	work,	we	use	data	from	two	sources.	The	first	data	was	
collected	by	the	China	Center	for	Disease	Control	and	Prevention.	
This	data	statistics	the	daily	summary	data	of	COVID-19	diagnosed	
by	laboratory	in	other	regions	of	Hubei	Province	(except	Wuhan	
for	short)	and	provinces	and	cities	outside	Hubei	Province	(Hubei	
for	short).	As	of	February	25,	2020,	the	data	recorded	the	gender	
and	 age	 information	 of	 each	 case.	 The	 second	 data	 source	 is	
quoted	 from	 reference,	 which	 records	 the	 age	 and	 gender	
information	 of	 confirmed	 cases	 of	 COVID-19	 in	 Wuhan	 and	
outside	Hubei	Province.	The	data	is	up	to	March	16,	2020.	Due	to	
the	problem	of	reporting	rate,	both	data	will	lose	some	cases,	so	
we	compared	the	two	data	to	verify	the	accuracy	of	the	data,	and	
the	results	are	shown	in	Table	1.	In	Table	1,	we	use	R	to	indicate	
susceptibility,	that	is,	the	risk	of	COVID-19	infection.	The	R	in	the	
follow-up	results	represents	susceptibility	(Table 1),	(Figure 3).

From	the	references	(J.	T.	Wu	et	al.,	2020),	we	have	obtained	the	
contact	matrix	of	the	people	in	Wuhan	and	Shanghai	before	and	
after	the	outbreak	of	COVID-19.	Figures	4	and	5	show	the	gender	
specific	contact	matrix.

Comparing	Figure	4	(A,	B)	and	(C,	D),	we	can	find	that	the	average	
exposure	 times	 of	 men	 and	 women	 before	 the	 outbreak	 of	
COVID-19	can	reach	a	maximum	of	12,	but	the	average	exposure	
times	after	the	outbreak	are	 less	than	1.	By	observing	Figure	4	
(A),	we	can	know	that	the	average	exposure	times	of	male	age	
group	 15-19	 and	 age	 group	 10-14	 are	 the	 largest.	 Looking	 at	
Figure	4	(B),	we	can	find	the	largest	average	number	of	contacts	
in	female	age	is	group	65+	and	age	group	55-59.

Comparing	Figure	5	(A,	B)	and	(C,	D),	we	can	find	that	the	average	

Figure 2 Schematic	diagram	of	theoretical	method.	(A)	Input	data,	𝑪	(t)	data	collected	in	social	Media;	(B)	The	
distribution	of	the	generation	time	of	the	two	times	selected	from	A;	(C)	MCMC	Method;	(D)	Output	
data,	estimated	effective	regeneration	number	𝑅.
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contact	times	of	men	before	the	outbreak	of	COVID-19	can	reach	
14	times,	the	average	contact	times	after	the	outbreak	are	less	
than	1	time,	while	the	average	contact	times	of	women	before	
the	outbreak	can	reach	20	times,	and	the	average	contact	times	
after	the	outbreak	are	about	2	times.	By	observing	Figure	5	(A),	
we	can	know	that	the	average	exposure	times	of	male	age	group	
15-19	and	age	group	15-19	are	the	 largest.	Looking	at	Figure	5	
(B),	we	can	find	that	the	average	number	of	contacts	of	female	
age	group	10-14	and	age	group	10-14	is	the	largest.

Figures	6	and	7	shows	the	average	number	of	contacts	between	
the	people	in	Wuhan	and	Shanghai	before	and	after	the	outbreak	
of	COVID-19	among	all	age	groups,	that	is,	the	average	contact	
matrix	(Figures 4-7).

In	addition,	we	also	analysed	the	proportion	of	male	and	female	
contacts	 in	 different	 age	 groups	 and	 the	 same	 age	 group	 in	
Wuhan	and	Shanghai.	The	results	are	shown	in	Figures	8	and	9.	
For	Wuhan	area,	before	the	outbreak	of	COVID-19,	the	average	
contact	times	of	men	and	women	with	the	same	age	group	first	
increased	and	 then	decreased	with	age,	and	 the	proportion	of	
male	and	female	age	groups	10-14	and	the	same	age	group	was	
the	largest;	After	the	outbreak	of	COVID-19,	the	average	number	
of	 contacts	 with	 the	 same	 age	 group,	 both	men	 and	 women,	
showed	an	overall	increasing	trend.	The	male	age	group	60-64	and	
the	same	age	group	had	the	largest	proportion	of	contacts,	while	
the	female	age	group	65+	and	the	same	age	group	had	the	largest	
proportion	 of	 contacts.	 For	 the	 Shanghai	 area,	 the	 proportion	
of	male	 and	 female	 age	 groups	 10	 to	 14	who	 contacted	 their	
peers	was	 the	 largest	 before	 the	 outbreak	 of	 COVID-19;	 After	

the	outbreak	of	COVID-19,	the	proportion	of	contact	with	peers	
showed	an	overall	upward	trend,	with	the	largest	proportion	of	
men	aged	60-64	and	women	aged	65+	(Figures 8 and 9).

Results of numerical simulation
Mechanism of the hysteresis loop
In	the	numerical	simulation,	we	use	a	random	network	with	the	
number	of	nodes	N=10000	and	the	average	degree	k=6,	and	set	
μ=	0.2,	100-time	steps	of	 the	system	in	both	the	burst	process	
and	 the	end	process	 to	study	 the	mechanism	of	 the	hysteresis	
loop	in	the	state	space	and	the	influence	of	parameters	on	the	
area	of	the	hysteresis	loop.	The	results	are	shown	in	Figure	10.	
In	Figure	10	(a),	we	set	T=1	to	study	∆	β.	For	the	influence	of	the	
area	of	hysteresis	loop,	it	can	be	found	that	the	hysteresis	loop	
can	also	appear	in	the	state	space	using	the	same	model,	which	
shows	that	the	memory	effect	before	the	system	evolves	to	the	
steady	state	is	also	the	reason	for	the	hysteresis	loop	in	the	state	
space.	 In	addition,	we	can	find	that	when	the	evolution	time	T	
is	fixed,	∆	β	=	0.001	responds	to	a	large	hysteresis	loop	area	St.	
In	Figure	10	(b),	we	set	∆	β=	0.01	to	study	the	influence	of	T	on	
the	area	of	hysteresis	loop,	in	which	the	area	of	hysteresis	loop	
Responding	to	T=5	is	larger	(Figure 10).

Next,	we	study	the	dependence	of	the	area	𝑆∆𝑡	of	the	hysteresis	
loop	in	the	state	space	on	the	parameters.	The	results	are	shown	
in	Figure	10	(c,	d).	By	observing	Figure	10	(c),	we	can	find	that	
when	the	evolution	time	T	 is	fixed,	the	 infection	rate	 increases	
by	∆	β.	The	larger	the	hysteresis	loop,	the	smaller	the	area	𝑆∆𝑡.	
This	indicates	that	the	system	has	a	threshold	of	∆	βc.	When	∆	β	

Figure 3 Comparison	 between	 official	 data	 and	 personal	 records.	 A	 represents	 the	 age	 Distribution	 of	
cases	from	two	different	data	sources.	B	represents	the	R	of	each	age	group,	and	the	shaded	area	
represents	95%	CI.

Age Official data (n=12,886) Official data (n=12,886) Ratio of R (Official data 
vs Individual data)

 n	(%) R	(95%	CI) n	(%) R	(95%	CI)  
0-19 688 0.23 533 0.23 1	(0.9,1.11)

 -5 (0.22,0.25) -5 (0.21,0.25)  
20-39 4366 1.07 3376 1.06 1.01	(0.98,1.04)

 -34 (1.05,1.10) -33 (1.03,1.08)  
40-59 5330 1.37 4211 1.37 1	(0.97,1.03)

 -41 (1.34,1.39) -42 (1.34,1.41)  
≥60 2502 1.26 2000 1.29 0.98	(0.93,1.03)

 -19 (1.22,1.31) -20 (1.24,1.34)  

Table 1.	The	consistency	between	official	data	reported	by	China	CDC	and	personal	record	data.
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<	∆	βc,	the	system	will	have	hysteresis	loop;	When	∆	β	≥∆	βc	,the	
system	will	 not	 have	hysteresis	 loop	when	 the.	 The	 sub	 graph	
in	Figure	11	(c)	shows	the	area	of	hysteresis	 loop	𝑆∆𝑡,	and	the	
infection	rate	increment,	∆	β	satisfy	the	power	law	relationship.	

From	 Figure	 10	 (d),	 we	 can	 find	 that	 when	 the	 infection	 rate	
increases	by	∆	β	When	fixed,	the	larger	the	evolution	time	T	is,	
the	larger	the	area	St	of	the	hysteresis	loop	is.	This	indicates	that	
the	system	has	a	threshold	value	Tc.	When	T<T,	the	system	does	

Figure 4 The	contact	matrix	of	male	and	female	subjects	in	Wuhan	before	and	after	the		Outbreak	of	COVID-19.	
Sub	graph	A	responds	to	the	contact	matrix	of	Wuhan	men	before	the		Outbreak	of	COVID-19,	sub	
graph	C	responds	to	the	contact	matrix	of	Wuhan	men	after	the	Outbreak	of	COVID-	19,	sub	graph	B	
responds	to	the	contact	matrix	of	Wuhan	women	before	the		Outbreak	of	COVID-19,	and	sub	graph	
D	responds	to	the	contact	matrix	of	Wuhan	women	after		The	outbreak	of	COVID-19.

Figure 5 The	contact	matrix	of	male	and	female	subjects	in	Shanghai	before	and	after	the	outbreak	of	COVID-19.	
Sub	graph	A	responds	to	the	contact	matrix	of	Shanghai	men	before	the	outbreak	of	COVID-19,	sub	graph	
C	responds	to	the	contact	matrix	of	Shanghai	men	after	the	outbreak	of	COVID-19,	sub	graph	B	responds	
to	the	contact	matrix	of	Shanghai	women	before	the	outbreak	of	COVID-19,	and	sub	graph	D	responds	to	
the	contact	matrix	of	Shanghai	women	after	the	outbreak	of	COVID-19.
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Figure 6 Average	 contact	 times	 of	Wuhan	 people	 before	 and	 after	 the	 outbreak	 of	 COVID-19.	 The	left	 figure	
corresponds	to	the	average	number	of	contacts	between	different	age	groups	before	the	outbreak	of	
COVID-19,	and	the	right	figure	corresponds	to	the	average	number	of	contacts	between	different	age	
groups	after	the	outbreak	of	COVID-19.

Figure 7 Average	contact	times	of	Shanghai	people	before	and	after	 the	outbreak	of	COVID-19.	The	 left	figure	
responds	 to	 the	 average	 number	 of	 contacts	 between	 different	 age	 groups	 before	 the	 outbreak	 of	
COVID-19,	and	the	right	figure	responds	to	the	average	number	of	contacts	between	different	age	groups	
after	the	outbreak	of	COVID-19.

Figure 8 The	proportion	of	contact	between	different	age	groups	and	the	same	age	group	in	Wuhan	before	and	after	
the	outbreak	of	COVID-19.	A	is	the	proportion	of	men	in	contact	with	peers	before	the	outbreak	of	COVID-19;	
B	is	the	same	as	A,	responding	to	female	results;	C	and	A	are	the	same,	responding	to	the	proportion	of	male	
contact	with	peers	after	the	outbreak;	D	and	C	are	the	same	responding	to	female	results.
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not	have	a	hysteresis	 loop;	when	T>Tc,	 the	 system	will	 have	a	
hysteresis	loop.	The	sub	graph	in	Fig.	10	(d)	shows	that	the	area	
of	hysteresis	loop,	𝑆∆𝑡,	and	the	evolution	time,	T,	satisfy	a	power	
law	relationship.

Figure	11	shows	the	relationship	among	the	area	𝑆∆𝑡,	evolution	
time	T	and	infection	rate	increment	∆	β	of	hysteresis	loop	under	
three-dimensional	figure,	we	get	the	same	conclusion	as	Figure	
10	(c,	d).	When	the	evolution	time	T	is	fixed,	𝑆∆𝑡	increases	with	
∆	β	Increasing	and	decreasing	monotonously;	when	the	infection	

rate	 increases	by	∆	β	when	fixed,	𝑆∆𝑡	 increases	monotonously	
with	the	increase	of	𝑇	(Figures 11 and 12).

Figure	12	shows	that	when	𝑆∆𝑡	takes	different	values,	∆	β	We	can	
find	that	when	the	area	of	hysteresis	loop	is	the	same,	∆	β	There	
is	a	 linear	 relationship	between	𝑇	 and	𝑇.	 In	order	 to	keep	𝑆∆𝑡 
unchanged,	the	larger	∆	β	Need	to	match	a	large	evolution	time.

Next,	we	compare	the	area	of	hysteresis	loop	with	the	infection	
rate	increment	∆	β	in	the	two	spaces

Figure 9 The	proportion	of	contact	between	different	age	groups	and	the	same	age	group	in	Shanghai	before	and	after	
the	outbreak	of	COVID-19.	A	is	the	proportion	of	men	in	contact	with	peers	before	the	outbreak	of	COVID-19;	B	
is	the	same	as	A,	coResponding	to	female	results;	C	and	A	are	the	same,	coResponding	to	the	proportion	of	male	
contact	with	peers	after	the	outbreak;	D	and	C	are	the	same,	coResponding	to	female	results.

Figure 10 (a)	Infection	density	at	responding	evolution	time	T=1,	𝜌𝑙	Variation	curve	with	∆𝑡;	(b)	Corresponding	infection	
rate	increment	∆	β=	Infection	density	at	0.01,	𝜌𝑙	Variation	curve	with	∆𝑡:	(c)	corresponding	to	𝑆∆𝑡	with	∆	β	Change	
curve	of:	(d)	Responds	to	the	change	curve	of	𝑆∆𝑡	with	T.	The	sub	graphs	in	(c,	d)	show	the	results	in	the	double	
logarithmic	coordinates.
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β	 and	 evolution	 time	 T.	 Figure	 13	 (a-d)	 shows	 the	 responding	
results	in	the	parameter	space.	𝑆ℎ	represents	the	area	enclosed	
by	the	hysteresis	loop	in	the	parameter	space.	In	the	parameter	
space,	the	infection	rate	increment	∆	β	When	fixed,	the	larger	the	
evolution	time	T	is,	the	smaller	the	area	Sn	of	hysteresis	loop	is;	
When	the	evolution	time	T	is	fixed,	the	larger	the	infection	rate	
increment	∆	β	 is,	the	larger	the	hysteresis	 loop	area	𝑆ℎ	 is.	This	
conclusion	is	completely	contrary	to	the	conclusion	in	the	state	
space,	and	there	is	a	paradox	in	the	dependence	of	the	area	of	
the	hysteresis	loop	in	the	two	spaces	on	the	parameters	(Figure 13).

In	order	to	find	out	the	cause	of	the	paradox,	we	return	to	the	
definition	of	the	area	of	the	hysteresis	loop	in	two	spaces.	Use	𝜌𝑔 
and	𝜌𝑐	to	express	the	infection	density	of	the	outbreak	process	
and	the	end	process	respectively,	then	the	expression	of	the	area	
of	the	hysteresis	loop	in	the	state	space	is	as	follows:

∆ ∆ ∆   =∫( ( ) ― ( ))  = ∫( ( 
 

 + ) ― ( 
 

 + ))                                                																	(8)

Among	 Represents	 the	 integer	 part	 of	 t/T,	 𝛿𝑡	 represents	 the	
fractional	part	of	t/T,	then	𝛿	the	size	of	t	is	between	[0,	T).	When	
𝛿𝑡	changes	between	[0,	T),	the	infection	rate	β	Leave	unchanged.	

In	the	approximate	case,	we	can	use	𝜌𝑔	and	𝜌𝑐	.The	average	value	
of 𝜌𝑔	and	𝜌𝑐	between	[0,	T]	replaces	𝜌𝑔	(𝑡)	and	(𝑡),	the	following	
relationship	is	obtained:

 ≈∫( ( ) ― ( )) 
 

 = 
 

 	 	 	 															(9)

According	 to	 equation	 (4),	 we	 can	 find	 that	 the	 simple	
despondence	between	𝑆∆𝑡	and	𝑆ℎ	is	satisfied.	

Relationship,	we	can	put	(𝛽)	convert	to	𝜌(𝑡),	convert	𝛽 to ∆𝑡.The	
result	is	shown	in	Figure	7.

We	find	that	the	curves	in	the	parameter	space	are	completely	
coincident	with	the	curves	in	the	state	space	after	transformation,	
that	is,	the	paradox	mentioned	above	is	caused	by	the	different	
calculation	methods	of	hysteresis	 loops	 in	 the	 two	spaces,	and	
the	 paradox	 can	 be	 eliminated	 by	 changing	 the	 parameters	
(Figure 14).

In	Figure	14(a,	b),	although	the	total	evolution	time	of	the	system	
is	different,	it	is	enough	to	complete	the	evolution	of	the	whole	
hysteresis	loop.	Considering	that	the	climate	change	in	real	life	is	
impermanent,	which	can	rain	or	clear	suddenly,	the	responding	
system	 in	 the	model	 does	 not	 have	 enough	 evolution	 time	 to	
complete	 the	 evolution	 of	 the	 whole	 hysteresis	 loop.	 We	 set	
the	system	to	evolve	20	time	steps	in	both	the	burst	phase	and	
the	end	phase,	and	the	results	are	shown	in	Figure	8.	When	the	
total	evolution	time	length	is	fixed,	the	larger	the	infection	rate	
increment	∆	β	is,	the	larger	the	area	𝑆∆𝑡	and	𝑆ℎ	of	the	hysteresis	
loop	 is;	 the	 smaller	 the	 transient	 evolution	 time	 length	 𝑇	 is,	

Figure 11 The	 relationship	 among	 Hysteresis	 loop	 area	 𝑆∆𝑡,	
evolution	time	𝑇	and	infection	rate	increment	∆	β.

Figure 12 When	 the	 area	 of	 hysteresis	 loop	 𝑆∆𝑡	 is	 fixed,	 ∆	 β	
Relationship	 with	 T.	 The	 blue	 rectangle,	 red	 circle	
and	black	triangle	respond	to	the	results	of	𝑆∆𝑡=14.0,	
14.5	and	15.0	respectively.

Figure 13 Figure	2	(a-d)	responds	to	the	result	in	the	parameter	
space.

Figure 14 The	rectangle	and	circle	in	(a,	b)	respond	to	the	results	
in	Figure	5	(a,	b)	after	conversion,	and	the	black	solid	
lines	and	red	solid	lines	in	the	figure	respond	to	the	
results	in	Figure	2	(a,	b).
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the	larger	the	areas	𝑆∆𝑡	and	𝑆ℎ	of	the	hysteresis	 loop	are.	The	
conclusions	 are	 consistent	with	 those	 in	 the	 parameter	 space,	
which	 shows	 that	 we	 can	 eliminate	 the	 paradox	 mentioned	
above	by	controlling	the	total	evolution	time	length.

Numerical simulation results verification
We	 use	 mean	 field	 theory	 to	 verify	 the	 results	 of	 numerical	
simulation.	 For	 SIS	 model,	 infection	 density	 ρ	 R	 satisfies	 the	
following	equation:

𝑑𝜌𝐼	=	(1	―	(1	―	(𝑡))𝜌	(1	―	𝜌	)	―𝜇𝜌	 	 														(10)

Represents	the	average	value	of	infected	neighbors	around	the	
node.	During	the	entire	evolution	process,	k;	Over	time.	For	the	
convenience	of	writing,	we	rewrite	the	above	formula	as	follows:

 
= (1 ― (1 ― ( )) ― )  ― (1 ― (1 ― ( ))) 2 			(11)

Next,	 we	 solve	 the	 functional	 expressions	 of	 infection	 rate	
density	 in	 the	 burst	 process	 and	 the	 end	 process	 respectively.	
For	explosive	processes,	when	nT<t<(n+1)	T,	β	(t)=	n	∆	β，𝜌𝐼(𝑡)	
=	𝜌𝐼(𝑛𝑇)

Substituting	 these	 two	conditions	 into	 the	above	equation,	we	
can	get:

 
= (1 ― (1 ― ∆( ))  ― )  ― (1 ― (1 ― ∆ )))2 											(12)

Divide	both	sides	by	𝜌2,	the	following	formula	is	obtained:

Then	let	t=nT	and	substitute	the	above	equation	to	get:

According	 to	 equation	 7	 and	 11,	 we	 can	 get	 the	 calculation	
formula	of	the	area	of	the	hysteresis	loop	in	two	cases:

Figure	16	shows	the	responding	theoretical	results.	We	can	find	
that	the	simulation	is	very	good	according	to	the	results	of	mean	
field	theory	and	numerical	results	(Figures 15-17).	

Next,	we	study	the	influence	of	network	structure	on	hysteresis	
loop.	 We	 construct	 a	 scale-free	 network	 with	 the	 same	 node	
size	and	evenness	as	the	random	network.	Figure	17	shows	the	
area	of	the	hysteresis	loop	in	the	scale-free	network	with	respect	
to	 the	 infection	 rate	 increment	 ∆	 β	 and	 evolutionary	 time.	
Comparing	Figure	10	and	Figure	16,	we	find	that	𝑆∆𝑡	 the	same	

dependency	relationship	with	𝑇,	which	proves	that	𝑆∆𝑡	has	the	
same	dependency	relationship	with	𝑇	and	∆	β.	Figure	18	shows	
the	three-dimensional	diagram	of	reliable	relationship	between	
the	area	of	the	hysteresis	loop	in	the	scale-free	network	𝑆∆𝑡	and	
the	infection	rate	increment	∆	β,	the	dependence	on	evolution	
time	T	(Figure 18).

Conclusion and Enlightenment
In	the	first	work,	we	focused	on	the	end	process	of	the	epidemic,	
and	found	that	the	epidemic	transmission	process	can	be	divided	
into	 the	 outbreak	 process	 and	 the	 end	 process.	 These	 two	
processes	 are	 asymmetric,	 forming	 a	 hysteresis	 loop.	 Through	
the	research,	we	found	that	the	memory	effect	before	the	system	
evolving	to	the	steady	state	is	the	cause	of	the	system	hysteresis	
loop,	and	studied	the	dependence	of	the	area	of	the	hysteresis	
loop	on	the	parameters	in	the	parameter	space.	Considering	that	
the	hysteresis	loop	in	the	data	is	found	in	the	state	space,	in	this	

Figure 15 Results	after	a	fixed	evolutionary	time	step.	Both	the	
burst	 process	 and	 the	 end	 process	evolve	 20	 time	
steps.	Where	(a,	b)	responds	to	the	result	of	𝑆∆;(c,	d)	
responds	to	the	result	of	𝑆𝑡.

Figure 16 (a,	b)	Responds	to	dependencies	among	𝑆∆	,	∆	β	and	
T;	(c,	d)	dependencies	among	St,	∆	β	and	T.	In	the	sub	
graph,	the	rectangle	symbol	responds	to	the	result	of	
numerical	simulation,	and	the	straight	line	responds	
to	the	result	of	mean	field	theory.

Figure 17 Results	 for	 scale-free	networks.	 (a)	Middle	𝑻=𝟏;	 (b)	
Middle	∆	β	=	𝟎.𝟎𝟏；(c)	Responds	to	the	relationship	
between	𝑆∆𝑡	and	∆	β;	(d)	Responds	to	the	relationship	
between	𝑆∆𝑡	and	𝑻.	The	sub	graphs	in	(c,	d)	respond	
to	 the	 results	 in	 the	 double	 logarithmic	 coordinate	
system.
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work,	we	directly	studied	the	hysteresis	loop	in	the	state	space,	
and	found	that	the	area	of	the	hysteresis	loop	in	the	state	space	
is	 related	 to	 the	 infection	 rate	 increment	∆	 β.	 Contrary	 to	 the	
time	dependence	of	evolution	and	the	conclusion	in	parameter	
space,	 this	 leads	 to	 a	 paradox.	 Through	 analysis,	 we	 find	 out	
the	 causes	of	 the	paradox	 and	 the	methods	 to	 eliminate	 it.	 In	
addition,	we	also	studied	the	influence	of	network	structure,	and	
found	 that	 the	 same	conclusions	 can	be	obtained	 in	 scale-free	
networks	as	in	random	networks,	which	shows	that	the	area	of	
the	hysteresis	loop	is	robust	to	parameter	dependence.	We	study	
hysteresis	loops	directly	in	state	space.	Using	the	same	model	as	
in	the	parameter	space,	we	also	reproduce	the	hysteresis	loop	in	
the	data	in	the	state	space.	In	the	state	space,	when	the	infection	
rate	 increases	 ∆	 β,	 the	 longer	 the	 evolutionary	 time	 is,	 the	
larger	the	area	of	the	hysteresis	loop	is;	When	the	evolutionary	
time	𝑇	 is	fixed,	 the	 infection	 rate	 increases	∆	β,	 the	 larger	 the	
hysteresis	loop	is,	the	smaller	the	area	is.	In	the	parameter	space,	
when	the	infection	rate	increases	∆	β	until	fixed,	the	larger	the	
evolution	time	is,	the	smaller	the	hysteresis	 loop	area	 is;	when	
the	evolutionary	time	𝑇	 is	 fixed,	 the	 infection	 rate	 increases	∆	
β,	the	larger	the	hysteresis	loop,	the	larger	the	area	is.	The	area	
of	the	hysteresis	loop	in	the	two	spaces	depends	on	completely	
opposite	parameters,	which	leads	to	a	paradox.	Through	analysis,	
we	found	the	cause	of	contradiction	in	the	calculation	formula	of	
different	hysteresis	loop	areas	in	the	two	spaces,	and	can	change	
𝑡=𝑇	through	parameter	transformation	β⁄	∆	β，	And	the	method	
of	controlling	the	total	evolutionary	time	length	to	eliminate	the	
paradox.	 In	addition,	we	also	 found	 that	when	 the	area	of	 the	
hysteresis	 loop	 is	 unchanged,	 the	 infection	 rate	 increases	 ∆	 β	
And	evolution	time	satisfy	linear	relationship.	By	using	different	
network	structures,	we	find	that	the	area	of	the	hysteresis	loop	
is	 related	to	 the	 infection	rate	 increment	∆	β	and	evolutionary	
time.	 Next,	 we	 will	 focus	 on	 the	 contribution	 of	 this	 work.	 In	
general,	 by	 analysing	 the	 data	 of	 influenza	 and	 measles,	 we	
further	revealed	the	asymmetry	between	the	outbreak	process	
and	 the	 end	 process	 of	 epidemic	 transmission,	 theoretically	
analysed	the	physical	mechanism	behind	it	from	the	perspective	
of	the	hysteresis	loop,	and	explained	the	paradox	that	the	area	
of	 the	hysteresis	 loop	depends	on	 the	parameters	 in	 the	 state	

space	and	parameter	 space.	 It	 is	 hoped	 that	 the	 two	work	we	
have	done	can	arouse	scholars'	attention	to	the	process	of	the	
end	of	the	epidemic	and	carry	out	relevant	research.	In	this	way,	
in	the	face	of	the	outbreak	of	the	epidemic,	our	work	can	provide	
theoretical	 guidance	 for	 the	 country	 to	 formulate	 effective	
strategies,	 so	 as	 to	 quickly	 eliminate	 the	 epidemic	 and	 reduce	
the	damage	caused	by	the	epidemic.

In	the	second	work,	we	studied	the	propagation	of	information,	
and	 found	 that	 the	 average	 propagation	 time	 of	 messages	
is	 highly	 related	 with	 the	 average	 generation	 time,	 and	 the	
distribution	of	the	average	generation	time	satisfies	the	negative	
binomial	distribution.	Under	the	framework	of	Bayesian	theory,	
we	propose	a	whole	set	of	theoretical	methods	to	estimate	the	
effective	basic	number	of	regeneration	of	messages.	The	biggest	
advantage	of	 this	method	 is	 that	 it	does	not	 rely	on	 the	 initial	
conditions	and	only	needs	some	C	(t)	data.	Any	other	parameters	
can	be	estimated	by	theoretical	methods,	and	the	accuracy	of	the	
estimation	results	is	high.	After	obtaining	the	change	curve	of	the	
effective	 regeneration	number	Rt	of	 the	event,	we	can	 judge	 the	
propagation	potential	of	the	event	at	different	times	according	to	Rt.	
In	addition,	we	can	predict	its	future	propagation	through	machine	
learning,	compare	C	(t)	of	different	events	to	judge	the	propagation	
potential	 of	 other	 events,	 which	 can	 help	 people	 develop	 more	
effective	 control	 strategies.	 In	 general,	 our	 work	 provides	 a	
theoretical	 method	 for	 deriving	 the	 effective	 regeneration	
number	in	the	public	opinion	model.	Using	this	method	can	help	
people	 judge	 the	 propagation	 potential	 of	 events	 and	 provide	
theoretical	guidance	for	formulating	effective	control	strategies.

In	the	third	work,	by	analyzing	the	age	and	gender	characteristics	
of	early	COVID-19	cases	in

Wuhan	and	Shanghai,	and	estimating	the	relative	risk	related	to	
susceptibility,	we	found	that	the

Intervention	measures	implemented	in	these	two	regions	had	a	
control	effect	on	the	spread	o

COVID-19.	 In	Wuhan	 and	 Shanghai,	 the	 number	 of	 confirmed	
cases	of	COVID-19	increases	with

Age.	The	median	age	of	the	confirmed	cases	in	Wuhan,	Shanghai	
and	other	places	outside	Hubei

Province,	whether	male	or	 female,	did	not	change	significantly	
over	time.	The	impact	of

Population	mobility	 (input	cases)	 is	mainly	 reflected	 in	 the	age	
groups	and	65+.	 It	 has	nothing	 to	do	with	gender.	 Specifically,	
among	men,	the	changes	in	age	groups	and	65+	are	the	largest,	
while	among	women,	the	changes	in	age	groups.	And	65+	are	the	
largest.	When	fitting	the	total	number	of	COVID-19	infections	in	
various	age	groups	in	Wuhan	and	Shanghai,	we	found	that	the	age	
and	gender	differences	in	the	data	could	not	be	fitted	using	the	
same	R,	but	the	age	and	gender	differences	in	the	data	could	be	
fitted	using	the	age	and	gender	related	susceptibility	R.	In	general,	
based	on	the	collected	data	related	to	COVID-19,	we	studied	the	
impact	of	susceptibility	on	the	transmission	of	COVID-19	in	the	
third	work.	Our	research	has	improved	the	understanding	of	the	
spread	of	COVID-19,	which	is	of	great	significance	for	developing	
more	effective	intervention	measures.

Figure 17 In	 a	 scale-free	 network,	 the	 three-dimensional	
diagram	of	the	dependency	relationship	between	𝑆∆𝑡 
for	𝑻	and	∆	β.
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